Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli

نویسندگان

  • Pekka Patrikainen
  • Veronica Carbonell
  • Kati Thiel
  • Eva-Mari Aro
  • Pauli Kallio
چکیده

Aldehyde deformylating oxygenase (ADO) is a unique enzyme found exclusively in photosynthetic cyanobacteria, which natively converts acyl aldehyde precursors into hydrocarbon products embedded in cellular lipid bilayers. This capacity has opened doors for potential biotechnological applications aiming at biological production of diesel-range alkanes and alkenes, which are compatible with the nonrenewable petroleum-derived end-products in current use. The development of production platforms, however, has been limited by the relative inefficiency of ADO enzyme, promoting research towards finding new strategies and information to be used for rational design of enhanced pathways for hydrocarbon over-expression. In this work we present an optimized approach to study different ADO orthologs derived from different cyanobacterial species in an in vivo set-up in Escherichia coli. The system enabled comparison of alternative ADOs for the production efficiency of short-chain volatile C3-C7 alkanes, propane, pentane and heptane, and provided insight on the differences in substrate preference, catalytic efficiency and limitations associated with the enzymes. The work concentrated on five ADO orthologs which represent the most extensively studied cyanobacterial species in the field, and revealed distinct differences between the enzymes. In most cases the ADO from Nostoc punctiforme PCC 73102 performed the best in respect to yields and initial rates for the production of the volatile hydrocarbons. At the other extreme, the system harboring the ADO form Synechococcus sp. RS9917 produced very low amounts of the short-chain alkanes, primarily due to poor accumulation of the enzyme in E. coli. The ADOs from Synechocystis sp. PCC 6803 and Prochlorococcus marinus MIT9313, and the corresponding variant A134F displayed less divergence, although variation between chain-length preferences could be observed. The results confirmed the general trend of ADOs having decreasing catalytic efficiency towards precursors of decreasing chain-length, while expanding the knowledge on the species-specific traits, which may aid future pathway design and structure-based engineering of ADO for more efficient hydrocarbon production systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase

Biocatalytic propane production: structure-based engineering of aldehyde-deformylating oxygenase improves specificity for short- and medium-chain-length aldehydes and enhances the propane generation in whole-cell biotransformations. This presents new opportunities for developing biocatalytic modules for the production of volatile "drop-in" biofuels.

متن کامل

Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length

BACKGROUND Aldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths. RESULTS Based on the crystal...

متن کامل

Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound

The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solven...

متن کامل

Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes.

Self-sufficient aldehyde deformylating oxygenases (ADOs) from Synechococcus elongatus PCC7942 fused to alternative electron transfer systems were successfully designed, constructed, characterized and used for efficient conversion of aldehydes into alkanes for the first time.

متن کامل

Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase

BACKGROUND Propane, a major component of liquid petroleum gas (LPG) derived from fossil fuels, has widespread applications in vehicles, cooking, and ambient heating. Given the concerns about fossil fuel depletion and carbon emission, exploiting alternative and renewable source of propane have become attractive. In this study, we report the construction of a novel propane biosynthetic pathway in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017